文本描述
学位论文原创性声明
本人所提交的学位论文《J银行河北分行小型制造业信贷客户选择模型研究》,是在
导师的指导下,独立进行研究工作所取得的原创性成果。除文中已经注明引用的内容外,
本文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要
贡献的个人和集体,均已在文中标明。
本声明的法律后果由本人承担。
论文作者(签名):
指导教师确认(签名):
2022年 05月 15日
2022年 05月 15日
学位论文版权使用授权书
本学位论文作者完全了解河北经贸大学有权保留并向国家有关部门或机构送交学
位论文的复印件和磁盘,允许论文被查阅和借阅。本人授权河北经贸大学可以将学位论
文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保
存、汇编学位论文。
(保密的学位论文在
年解密后适用本授权书)
论文作者(签名):
指导教师(签名):
2022年 05月 15日
2022年 05月 15日
摘要
制造业是立国之本、强国之基。伴随着制造业的转型升级,制造业信贷客户资金需
求日益旺盛,尤其是小型制造业企业普惠贷款需求更是与日俱增。J银行河北分行积极
承担国有大行社会责任,通过各类信贷产品积极支持小型制造业企业融资需求,但不良
贷款率始终较高。究其原因,在于现有小型制造业信贷客户选择体系设计主要参考大中
型客户的选择模型,忽略了小型制造业企业自身特点,无法精准识别客户。因此构建小
型制造业信贷客户选择模型对改善 J银行河北分行现有小型制造业信贷客户选择策略,
提升资产质量具有重要意义。同时,还可以为防范和化解商业银行系统风险,缓解因信
息不对称导致的小型制造业贷款供需矛盾提供借鉴和参考。
随着科学技术的发展,国内外学者在商业银行信贷客户选择评价体系、评价方法、
选择模型等方面进行了很多有益的探究。国内外研究学者不断更新完善信贷客户选择方
法,评价指标也从财务指标转向财务与非财务指标相结合。在借鉴前人研究基础上,本
文以 J银行评级体系及现有研究中能够显著判别客户违约状态指标为基础,以 J银行河
北分行 220个小型制造业信贷客户指标数据为样本,运用逐步判别分析法、共线性分析
法构建了小型制造业信贷客户选择模型,并运用 J银行河北分行 132个小型制造业信贷
客户数据进行实证分析。该模型不仅能够显著识别小型制造业企业信贷风险,提升客户
选择质量,更为完善 J银行小型制造业信贷客户选择方法提供了数据支撑和理论依据。
本文的客户选择模型构建过程,主要分为三步:首先,以 J银行小型制造业评价指标为
基础,借鉴前人研究构建了涵盖宏观环境、企业实力等 7个方面的 51个预选指标集,
运用逐步判别分析、共线性分析法筛选出能够显著识别客户违约风险的 10个指标。其
次,依据 10个指标对客户违约风险的判别能力对指标赋权,构建小型制造业信贷客户
选择模型。最后,通过样本数据对模型进行检验,表明模型判别准确率较高,可以用于
小型制造业信贷客户选择。在此基础上,从将企业公开信息纳入选择指标、重点关注企
业信用记录指标、精简定性指标、简化客户选择机制、增强数据积累及管理能力五个方
面提出了改善 J银行河北分行小型制造业信贷客户选择现状的建议,助力分行提升信贷
资产质量,进而获得更加稳定、持续的利润。
关键词:J银行河北分行;小型制造业;逐步判别分析;信贷客户选择模型
I
Abstract
Manufacturing industry is the foundation of a country and the base of the power. With the
transformation and upgrading of the manufacturing industry, the demand for funds of
manufacturing credit customers is increasingly strong. The demand for inclusive loans from
small manufacturing enterprises is increasing day by day. J Bank Hebei Branch actively
assumes the social responsibilities of the large state-owned banks and actively supports the
financing needs of small manufacturing enterprises through various credit products, but the
non-performing loan rate is always high. The reason is that the design of the existing small
manufacturing credit customer selection system mainly refers to the selection model of large
and medium-sized customers, ignoring the characteristics of small manufacturing enterprises,
which is unable to accurately identify customers. Therefore, building a small manufacturing
credit customer selection model is of great significance for improving the existing small
manufacturing credit customer selection strategy of J Bank Hebei Branch and enhancing the
quality of assets. At the same time, it can also provide reference for preventing and dissolving
commercial bank system risks and alleviating the contradiction between supply and demand of
small manufacturing loans caused by information asymmetry.
With the development of science and technology, domestic and foreign scholars have
conducted many useful researches on the evaluation system, evaluation methods, and selection
models of commercial bank credit customers. Domestic and foreign scholars continue to update
and improve credit customer selection methods, and evaluation indicators have also shifted
from financial indicators to a combination of financial and non-financial indicators. Based on
previous studies, this thesis uses J Bank’s rating system, existing research which can
significantly identify customer default status indicators, and 220 small manufacturing credit
customer indicator data from J Bank Hebei Branch. This thesis constructs a small
manufacturing credit customer selection model, using stepwise discriminant analysis and
collinearity analysis method. This thesis also uses the data of 132 small manufacturing credit
customers of J Bank Hebei Branch for empirical analysis. This model not only can significantly
identify the credit risk of small manufacturing enterprises, improve the quality of customer
II
。。。以下略