会员中心     
首页 > 资料专栏 > 经营 > 运营治理 > 其他资料 > 车载超级电容器用高性能稻壳基活性炭工业化的可行性研究

车载超级电容器用高性能稻壳基活性炭工业化的可行性研究

guxiaoj***
V 实名认证
内容提供者
热门搜索
资料大小:2211KB(压缩后)
文档格式:DOC
资料语言:中文版/英文版/日文版
解压密码:m448
更新时间:2020/7/16(发布于山东)

类型:金牌资料
积分:--
推荐:免费申请

   点此下载 ==>> 点击下载文档


文本描述
本文以农业废弃物生物质稻壳为原料,利用碱活化制备了稻壳基电容炭,围 绕着稻壳基电容炭工业化所面临的实际问题,研究了酸处理条件对稻壳基电容炭 中无机盐成分的影响,碳化物粒径和稻壳基电容炭粒径与制备的电容炭其性能的 关系,工业级活化剂与试剂级活化剂对电容炭性能的影响,在此基础上设计了一 个工业化方案。 研究表明,盐酸能有效去除电容炭中一些金属氧化物等杂质,经过盐酸处理 的电容炭具有快速的电流响应能力,有着较小的等效串联电阻(ESR)。采用 KOH 活化法制备出的稻壳基电容炭经过盐酸处理,在 6 M 的 KOH 电解液中,5 mV o s -1 的扫速下,充放电曲线呈现出良好的对称性,表现出典型的双电层电容性能,在 电流密度 15 A o g -1 相对于 0.5 A o g -1 时,经过盐酸处理的电容炭其比电容值仅下降 了 10%,而未经过盐酸处理的电容炭比电容值下降了 29%,说明,经过盐酸处 理的电容炭有着超级电容器良好的倍率性能。 通过活化物筛选,电容炭的颗粒大小对其比电容无明显影响,而碳化物粒度 对电容炭材料的性能影响较大,碳化物粒径为 74 um 的电容炭存在大量微介孔结 构,具有很高的比表面积和比电容值。 用工业级 NaOH 作为活化剂得到的电容炭与试剂级 KOH 作为活化剂活化得 到的电容炭相比,比电容大于 200 F o g -1 ,满足车载超级电容器对于碳材料的要求,II 比电容值降低不大,且成本大大降低;因此,选用工业级 NaOH 作为活化剂活 化得到的稻壳基电容炭是可行的,并设计了工业化流程方案,探讨了其产业化前 景的可行性。 关键词: 新能源汽车,稻壳,电容炭,超级电容器,工业化III Industrialization Exploring Study on Rice Husk-Based Activated Carbon with High Performance Capacitance for on-Board Supercapacitors Yang Li Supervised by Associate Pro. Weimin Huang Professor Haibo Lin Major: Physical Chemistry Abstract Based on agricultural waste biomass of rice husk as raw material, alkali activation prepared rice husk-based activated carbon, Revolved around industrialization facing practical problems of rice husk-based activated carbon, studying the effect of acid treatment condition on rice husk-based activated carbon containing inorganic ingredients, the relationship carbide particle size and rice husk-based activated carbon particle size with the performance of rice husk-based activated carbon, industrial grade activator and reagent grade activator effect on performance of activated carbon, designed an industrial process plan. Studies have shown that hydrochloric acid can effectively remove some metallic oxide in activated carbon, after hydrochloric acid treated, activated carbon had the fastest current response capacity, with low Equivalent Series Resistance (ESR). By KOH activator prepared activatedIV carbon after hydrochloric acid treatment, 6 M KOH as the electrolyte, 5 mV o s -1 sweep speed, charge and discharge curves showed a good symmetry, the typical properties of electric double-layer capacitors, under current density 15 A o g -1 compared with 0.5 A o g -1 , after hydrochloric acid treated activated carbon, the value of capacitance fell by only 10%, and not processed by hydrochloric acid carbon, the value of capacitance fell by only 29%, showed that after hydrochloric acid treated activated carbon had a good rate capability. By activation filter, the particle size of activated carbon had no significant effect on specific capacitance, while carbide particle size greatly influenced on the properties of activated carbon material, carbide particle size is 74 um of activated carbon, there was a lot of micro-mesoporous structure, had a very high specific surface area and specific capacitance value. Compared industrial level NaOH as Activator got activated carbon with analysis pure KOH as Activator, specific capacitance was greater than 200 F o g -1 , met requirements of on-board supercapacitors activated carbon material, specific capacitance reduced was unlikely, and cost greatly reduced; so selected industrial level NaOH as Activator activation got rice husk-based activated carbon was feasible, and designed an industrialization process program, discussed feasibility of industrialization prospects.V Key words: New energy vehicles, rice husk, activated carbon, supercapacitors, industrializationI 目 录 第一章 绪论...............................................................................................1 1.1 新能源汽车概述 ..............................................................................1 1.1.1 新能源汽车的定义与分类 ........................................................1 1.1.2 新能源汽车国内外研究现状 ....................................................2 1.1.3 新能源汽车面临的困难与挑战................................................2 1.2 超级电容器概述 ...............................................................................3 1.2.1 超级电容器分类 ........................................................................4 1.2.2 超级电容器的理论背景 .............................................................4 1.2.3 超级电容器应用 ........................................................................6 1.2.4 目前存在的问题 ........................................................................6 1.3 资源化过程研究概述 .......................................................................6 1.4 报告立题背景、研究内容和创新性 ..............................................7 1.4.1 立题背景 ....................................................................................7 1.4.2 研究内容 ....................................................................................8 1.4.3 创新点 ........................................................................................8