首页 > 资料专栏 > 制造 > 研发工艺 > 产品工艺 > 棉秆皮纤维的制备及其纺织加工的可行性研究报告DOC

棉秆皮纤维的制备及其纺织加工的可行性研究报告DOC

dingyic***
V 实名认证
内容提供者
热门搜索
资料大小:4014KB(压缩后)
文档格式:DOC
资料语言:中文版/英文版/日文版
解压密码:m448
更新时间:2021/1/30(发布于北京)
阅读:5
类型:金牌资料
积分:--
推荐:升级会员

   点此下载 ==>> 点击下载文档


文本描述
I 摘要 棉秸秆来源丰富,但应用却非常有限。2015-2016 年度我国的棉花产量约 540 万吨, 棉花种植过程产生的秸秆总量达到了 2600 万吨。目前,这些秸秆的主要处理方式还是 田间焚烧。棉秆皮约占棉秸秆总质量的 27 %,从棉秆皮中提取木质纤维素纤维不仅可 以增加纺织原料的供给,还可以减轻秸秆焚烧造成的环境污染。一些研究尝试了用常压 碱煮的方法提取棉秆皮纤维。但是,由于纤维粗(51 dtex)或木质素含量高(>11.8 %)等原 因,目前还未见棉秆皮纤维在纺织领域产业化应用的报道。本文采用了蒸汽闪爆、碱和 过氧化氢联合的方法、细菌和生物酶脱胶的方法及细菌和高温碱煮联合等三种方法提取 了棉秆皮纤维,研究了脱胶工艺对纤维性能的影响。将棉秆皮纤维与棉混纺,制成了棉 /棉秆皮纤维混纺纱及其针织物。对棉秆皮纤维的纺纱性能、棉/棉秆皮纤维混纺织物的 风格及染色性能进行了研究。 蒸汽闪爆、碱和过氧化氢联合的方法可提取细的棉秆皮纤维。2 MPa 的蒸汽压力、 120 S 的保压时间是比较理想的闪爆工艺条件。闪爆预处理后的棉秆皮纤维较粗(49.3 dtex),具有较高含量的半纤维素(15.7 %)、木质素(24.3 %)及较高的断裂强度(2.7 cN/dtex)。后续的碱煮过程使纤维的木质素含量降至 13.3 %,细度降至 28.3 dtex。最后 的过氧化氢处理使纤维的木质素含量再降至 11.8%、细度降至 26.8 dtex。纤维的力学性 能与棉相似。 细菌预处理和生物酶脱胶结合的方法也可以降低木质素的含量,但很难得到细的棉 秆皮纤维。分泌果胶酶的菌株可以去除棉秆皮中的胶质,分离出纤维束。后续的复合酶 处理可以使纤维的半纤维素含量降低至5.8%,木质素含量降低至8.2%,但纤维较粗(55.0 dtex)。在脱胶过程中,不同的酶之间存在协同作用,复合酶的脱胶效果明显优于单一 酶。 细菌预处理和高温碱煮结合的方法可提取直径小、木质素含量低的棉秆皮纤维。细 菌预处理后的纤维束具有较高含量的木质素(15.3 %)和半纤维素(12.6 %)。这些纤 维束在130℃下用4 %的碱处理5 h后得到细度24.0 dtex、长度50.8 mm及木质素含量3 % 的棉秆皮纤维。该纤维具有略低的断裂强度(2.0 cN/dtex)和杨氏模量(56.2 cN/dtex) 及 I 型纤维素的结晶结构。在高温条件下,纤维内的木质素可以更有效地被去除,使纤 维变细、柔软。 棉秆皮纤维可与棉混纺,制成棉/棉秆皮纤维混纺纱及相应的针织物。支数和捻系数 相同时,棉/棉秆皮纤维混纺纱的强度低于纯棉纱。当支数相同时,混纺纱的临界捻系数 始终高于纯棉纱。棉秆皮纤维在混纺纱中的最高比例可达到 30 %,而黄麻仅为 10 %。 混纺比同为 90/10 时,棉/棉秆皮纤维混纺纱的条干不匀率比棉/黄麻混纺纱低 25.9 %, 断裂强度高 61.6 %。棉/棉秆皮纤维混纺织物的顶破强力比棉/黄麻混纺织物高,手感更 柔软、平滑。当棉秆皮纤维的比例从 10 %升至 30 %后,棉/棉秆皮纤维混纺纱的条干 CV %升高了 69.9 %,毛羽指数上升了 78.6 %,断裂强度和断裂伸长率分别降低 20.6 %摘要 II 和 6.5 %;棉/棉秆皮纤维混纺织物的顶破强力下降 27 %,手感变得更硬更粗糙。 活性红 120 在棉秆皮纤维上的上染率比棉高 15.7 %,这是因为棉秆皮纤维的结晶度 比棉低,Zeta 电位比棉高。上染率 Q t 为 30 g/Kg 时,染 1 吨棉秆皮纤维需活性红 120 染 料 38.5 Kg,这比染 1 吨棉需要的染料量少 27 %。染色后混纺织物的 K/S 值比纯棉织物 高,L*值比纯棉织物低;棉/棉秆皮纤维混纺织物的水洗、耐光及干摩擦牢度与纯棉织 物相同,但沾色和湿摩擦牢度略低。 总之,本文中的棉秆皮纤维可作为传统韧皮纤维的一个优质替代品,用于高附加值 的纺织应用。本文中的研究成果不仅可以缓解环境压力,还可以促进纤维工业的可持续 发展。 关键词:棉秆皮;木质纤维素纤维;纺纱;手感;染色Abstract III ABSTRACT Cotton stalks are available in abundant but have limited applications. In 2015-2016, global fiber production has reached 5.4 million tons. About 26 million tons of cotton stalks are produced due to cotton cultivation. Currently, most of these cotton stalks are still burned in the field. Bark of cotton stalks accounts for 27 % total mass of cotton stalks. Extraction of lignocellulosic fibers from bark of cotton stalks will not only improve the supply of textile materials but also alleviate the environmental pollution from straw burning. Some researchers have extracted cotton stalk bark fibers (CSBF) using alkali under atmospheric pressure. However, few reports are now available on the industrial application of CSBF in textiles, mainly due to their coarse fineness (51 dtex) and/or high lignin content (>11.8 %). In this study, three methods were studied to extract CSBF, including successive treatments of steam explosion, alkali and hydrogen peroxide, bacteria and enzyme treatments, as well as bacterial pretreatment and alkali treatment under high temperatures in succession. The CSBF were then blended with cotton and processed into cotton/CSBF blended yarns and their knitted fabrics. The spinning properties of CSBF, the handle and dyeing properties of cotton/CSBF blended fabrics were analyzed. CSBF could be extracted using combined treatments of steam explosion, alkali and hydrogen peroxide in succession. Steam pressure of 2 MPa and holding time of 120 S were considered appropriate for fiber extraction. CSBF after steam-explosion treatment had a relatively coarse fineness of 49.3 dtex, high hemicellulose content of 15.7%, lignin content of 24.3% and breaking strength of 2.7 cN/dtex. Subsequent alkali treatment reduced lignin content to 13.3% and fiber fineness to 28.3 dtex. The last peroxide treatment reduced lignin content to 11.8%, fiber fineness to 26.8 dtex and resulted in CSBF with tensile properties similar to cotton. Fiber bundles could be seperated from bark of cotton stalks using combined treatments of bacteria and enzyme in succession, but it was difficult to obtain CSBF with good fineness. Strains that could secret pectinolytic enzymes were employed to remove the gum inside bark of cotton stalks. Subsequent treatments of complex enzymes could reduce the hemicellulose content to 5.8% and lignin content to 8.2%, but the fibers remained a coarse fineness of 55.0 dtex. Synergistic effect was found between different enzymes in the degumming process. The experimental result of compound enzymes was significantly better than that of single enzyme. CSBF with both good fineness and low lignin content could be extracted using combined treatments of bacteria and alkali under high temperatures in succession. Fiber bundles after bacterial pretreatment had a lignin content of 15.3 % and hemicellulose content of 12.6 %. After being treated by 4 % alkali at 130℃ for 5 h, such bundles were changed into fibersAbstract IV with fineness of 24.0 dtex, length of 50.8 mm and lignin content of 3 %. The fibers had a slightly low breaking strength of 2.0 cN/dtex, Young’s modulus of 56.2 cN/dtex and crystalline structure of type I. Lignin components inside CSBF could be removed more efficiently under high temperatures, resulting in finer and softer fibers. CSBF could be blended with cotton, processed into cotton/CSBF blended yarns and corresponding knitted fabrics. Cotton/CSBF blended yarns had breaking strength lower than that of pure cotton yarns with same cotton counts and twist factors. The critical twist factor of blended yarns was always higher than that of pure cotton yarns with the same counts.The maximum ratio of CSBF available in their cotton blended yarns could reach 30 % whereas corresponding ratio of jute was only 10 %. Cotton/CSBF blended yarns with blending ratio of 90/10 had unevenness 25.9 % lower and tenacity 61.6 % higher than that of cotton/jute blended yarns with the same blending ratio. Cotton/CSBF blended fabrics had bursting strength higher, and are softer and smoother than the fabrics of cotton/jute blends. When the proportion of CSBF in their cotton blended yarns increased from 10 % to 30 %, CV % of yarn unevenness raised by 69.9 %, hairiness index increased by 78.6 %, and breaking strength and elongation decreased by 20.6 % and 6.5 %, respectively. Correspondingly, the bursting strength of the blended fabrics decreased by 27 % and the faibrics turned to be stiffer and coarser. Dye sorption of Reactive Red 120 on CSBF was 15.7 % higher than that on cotton, which should be attributed to less negative Zeta potential and lower crystallinity % of CSBF compared to cotton. Dyeing 1 ton of CSBF with a dye sorption of 30 g/Kg required 38.5 Kg of Reactive Red 120, which was 27 % lower than that needed in the dyeing of cotton. Dyed fabrics of cotton/CSBF blends had higher K/S but lower L* compared to pure cotton fabrics. Moreover, dyed fabrics of cotton/CSBF blends had the same laundering and light colorfastness, but slightly lower staining and wet crocking colorfastness than pure cotton fabrics. Overall, CSBF in our study can be used as a good alternative to traditional bast fibers for highly valuable textile applications. The results in our study will not only alleviate the environmental pressure but also improve the sustainable development of fiber industry. Key words: bark of cotton stalks; lignocellulosic fibers; spinning; handle; dyeing目 录 V 目 录 摘要.........................................................................................................................................I ABSTRACT ............................................................................................................................. III 目 录...................................................................................................................................V 第一章 绪论..............................................................................................................................1 1.1 课题的研究背景.......................................................................................................... 1 1.2 秸秆基生物质纤维的提取方法.................................................................................. 1 1.3 棉秸秆的结构和组成.................................................................................................. 4 1.3.1 棉秆的结构........................................................................................................ 4 1.3.2 棉秆皮纤维的组成............................................................................................ 7 1.4 棉秸秆纤维的提取和应用现状................................................................................ 13 1.5 研究的目的、意义和内容........................................................................................ 15 1.5.1 课题研究的目的和意义.................................................................................. 15 1.5.2 课题的研究内容.............................................................................................. 15 第二章 闪爆和化学脱胶联合提取棉秆皮纤维的性能研究................................................17 2.1 引言............................................................................................................................ 17 2.2 实验部分.................................................................................................................... 19 2.2.1 实验原料........................................................................................................... 19 2.2.2 纤维提取方法.................................................................................................. 19 2.2.3 测试方法和性能表征...................................................................................... 20 2.3 闪爆预处理工艺对纤维性能的影响........................................................................ 20 2.3.1 保压时间对纤维性能的影响.......................................................................... 21 2.3.2 蒸汽压力对纤维性能的影响.......................................................................... 21 2.4 闪爆后的碱脱胶工艺对纤维性能的影响................................................................ 24 2.5 过氧化氢后处理对纤维性能的影响......................................................................... 25 2.6 棉秆皮纤维的形态分析............................................................................................ 26 2.7 棉秆皮纤维的红外光谱分析.................................................................................... 26 2.8 棉秸秆皮纤维的结晶结构分析................................................................................ 27 2.9 棉秆皮纤维的力学性能分析.................................................................................... 28 2.10 小结........................................................................................................................... 29 第三章 细菌与生物酶方法提取棉秆皮纤维的性能研究....................................................31 3.1 引言............................................................................................................................ 31 3.2 实验部分.................................................................................................................... 33 3.2.1 实验原料.......................................................................................................... 33 3.2.2 棉秆皮纤维的提取方法.................................................................................. 33目 录 VI 3.2.3 测试方法和性能表征...................................................................................... 34 3.3 细菌脱胶后纤维束的胶质含量分析........................................................................ 35 3.4 漆酶脱胶后纤维束的胶质含量分析........................................................................ 36 3.5 漆酶/介质体系脱胶后纤维束的胶质含量分析....................................................... 37 3.6 木聚糖酶脱胶后纤维束的胶质含量分析................................................................. 38 3.7 果胶酶脱胶后纤维束的胶质含量分析.................................................................... 38 3.8 复合酶脱胶后纤维的性能分析................................................................................ 39 3.9 小结............................................................................................................................ 41 第四章 低木质素棉秆皮纤维的制备及其性能研究............................................................43 4.1 引言............................................................................................................................ 43 4.2 实验部分.................................................................................................................... 44 4.2.1 实验原料.......................................................................................................... 44 4.2.2 棉秆皮纤维的提取方法.................................................................................. 44 4.2.3 测试方法和性能表征...................................................................................... 45 4.3 高温碱煮法提取棉秆皮纤维的性能........................................................................ 46 4.3.1 碱浓度对纤维性能的影响.............................................................................. 46 4.3.2 碱处理温度和时间对纤维性能的影响.......................................................... 48 4.3.3 高温提取棉秆皮纤维的形态分析.................................................................. 51 4.3.4 高温提取棉秆皮纤维的结晶结构分析.......................................................... 51 4.4 细菌预处理和高温碱煮联合提取棉秆皮纤维的性能............................................ 52 4.4.1 棉秆皮纤维的尺寸.......................................................................................... 52 4.4.2 棉秆皮纤维的成分.......................................................................................... 53 4.4.3 棉秆皮纤维的力学性能.................................................................................. 54 4.4.4 棉秆皮纤维的红外光谱.................................................................................. 56 4.4.5 棉秆皮纤维的结晶结构.................................................................................. 57 4.5 小结............................................................................................................................ 58 第五章 棉秆皮纤维的纺织加工可行性研究........................................................................59 5.1 引言............................................................................................................................ 59 5.2 实验部分.................................................................................................................... 60 5.2.1 实验原料.......................................................................................................... 60 5.2.2 棉/棉秆皮纤维混纺纱的制备......................................................................... 60 5.2.3 棉/棉秆皮纤维混纺织物的制备..................................................................... 61 5.2.4 棉秆皮纤维的上染速率曲线和染色平衡曲线.............................................. 61 5.2.5 棉/棉秆皮纤维混纺织物的染色工艺............................................................. 61 5.2.6 测试方法和性能表征...................................................................................... 62 5.3 混纺纱的结构和性能分析........................................................................................ 64 5.4 混纺织物的手感与外观分析.................................................................................... 68目 录 VII 5.5 染料在棉秆皮纤维和棉上的染色性能比较............................................................ 69 5.5.1 上染速率的比较............................................................................................... 69 5.5.2 染色平衡曲线的比较...................................................................................... 71 5.6 染料在混纺织物和纯棉织物上的染色性能比较.................................................... 72 5.6.1 60℃恒温条件下的上染速率........................................................................... 72 5.6.2 60℃上染 85℃固色条件下的上染速率.......................................................... 73 5.7 混纺织物的颜色及色牢度分析................................................................................ 75 5.8 小结............................................................................................................................ 76 主要结论与展望......................................................................................................................78 主要结论...........................................................................................................................78 创新点...............................................................................................................................79 展望...................................................................................................................................79 致 谢........................................................................................................................................80