首页 > 资料专栏 > 论文 > 专题论文 > 优化改进论文 > MBA毕业论文_电机组结构演进的环境效应与路径优化PDF

MBA毕业论文_电机组结构演进的环境效应与路径优化PDF

青珠家具
V 实名认证
内容提供者
资料大小:1008KB(压缩后)
文档格式:PDF
资料语言:中文版/英文版/日文版
解压密码:m448
更新时间:2022/7/23(发布于浙江)
阅读:2
类型:金牌资料
积分:--
推荐:升级会员

   点此下载 ==>> 点击下载文档


文本描述
1 摘要 随着世界各地的化石能源供应日益紧张,电力需求的增长使得发电受到普遍 的科学关注。而中国的电力系统服务的人口数量世界最多,由其产生的各种资源环 境问题也是可持续发展关注的焦点。考虑到火电依然占据着中国电力系统的70% 左右,且火电企业是燃煤大户,在其发电过程中,要向大气中排放CO2、SO2、Nox 和PM等污染物。 本文首先运用TCT(Type-cohort-time)的物质存量评估方法,对中国1980-2018 年的火电机组结构的演进过程进行了分析,其中火电机组结构分为100 MW以下、 100-200 MW、200-300 MW、300-600 MW、600-1000 MW和1000 MW及以上。其 次,运用LCA模型(生命周期评价方法)对中国火电机组1980-2018年的污染物 排放进行了评估,从而考虑火电生命周期的环境效应问题,并合理的加上了对整个 电力系统中其它发电能源的生命周期排放的研究。接着,运用LMDI对中国火电 机组1980-2018年的污染物排放进行动因分解,具体将污染物排放分解成装机容量 因素、装机结构因素、运行时间因素和排放系数因素的变化。 最后,针对2019—2050年的中国火电机组结构的变化,一方面通过BASS模 型对2019-2050年火电机组结构的变化进行了预测,将300MW及以上火电机组作 为群体系数进行估计,将可再生能源机组作为替代系数进行估计,并通过情景因素 的不确定性分析来探讨发电量的增长率、300MW及以下的火电机组的使用寿命和 替代能源装机比例对中国火电机组生命周期内的排放影响;另一方面,通过优化模 型对中国火电机组结构进行路径优化研究,以安徽省为例进行探讨,通过相关模型 对安徽省未来的电力需求、火电装机规模和大气污染物排放量进行全面的预测,并 在此基础上通过投入成本与排放的关系来建立火电系统减排优化模型,得到2019- 2050年安徽省火电清洁化转型污染物排放最低的优化路径,为火电的清洁化转型 提供优化路径,并同样通过情景因素的不确定性分析来探讨投资成本的多少对安 徽省火电机组演进结构的总排放的影响。 关键词:火电机组;结构演进;环境效应;路径优化 ABSTRACT 2 ABSTRACT With the increasingly tight supply of fossil energy around the world, the increase in demand for electricity has generated widespread scientific attention. China's power system serves the largest number of people in the world, and the various resource and environmental issues arising from it are also the focus of sustainable development. Considering that thermal power still occupies about 70% of China's power system, and thermal power enterprises are large coal-fired enterprises, in the course of their power generation, they must emit pollutants such as CO2, SO2, Nox and PM into the atmosphere. This paper first uses the TCT (Type-cohort-time) material stock assessment method to analyze the evolution of the thermal power unit structure in China from 1980 to 2018. The thermal power unit structure is divided into below 100 MW, 100-200 MW, 200 -300 MW, 300-600 MW, 600-1000 MW and 1000 MW and above. Secondly, the LCA model (life cycle assessment method) was used to evaluate the pollutant emissions of China's thermal power plants from 1980 to 2018, so as to consider the environmental effects of thermal power life cycle, and reasonable addition of research on the life cycle emissions of other power generation sources in the entire power system. Then, LMDI was used to analyze the driving force of pollutant emissions from 1980 to 2018 in China's thermal power units, specifically decomposing pollutant emissions into changes in installed capacity factors, installed structure factors, operating time factors, and emission factor factors. Finally, in view of the changes in the structure of Chinese thermal power units from 2019 to 2050, on the one hand, the BASS model was used to predict the changes in the structure of thermal power units from 2019 to 2050, estimating 300MW and above thermal power units as a group coefficient, and using renewable energy units as a substitute coefficient, and the uncertainty analysis of scenario factors is used to explore the impact of the growth rate of power generation, the service life of thermal power units of 300MW and below, and the proportion of alternative new energy installed capacity on the emissions of China's thermal power units during the life cycle. On the other hand, the optimization model is used to study the path optimization of China's thermal power generating unit structure, and Anhui Province is taken as an example to discuss, and the relevant model is used to comprehensively predict the future electricity demand, thermal ABSTRACT 3 power installed capacity and atmospheric pollutant emissions of Anhui Province. And on this basis, the optimization model of thermal power system emission reduction is established through the relationship between input cost and emissions, and the optimal path for pollutant emissions from the clean transformation of thermal power in Anhui Province from 2019 to 2050 is obtained, providing an optimized path for the clean transformation of thermal power. And also through the uncertainty analysis of scenario factors to explore the impact of investment cost on the total emissions of Anhui Province thermal power unit evolution structure. KEYWORDS: thermal power unit; structural evolution; environmental effects and path optimization 4 目 录 第一章 绪论 ......................................................................................................................... 1 1.1 研究背景与意义 ........................................................................................................ 1 1.1.1 国际背景 ........................................................................................................... 1 1.1.2 国内背景 ........................................................................................................... 1 1.2 文献综述 .................................................................................................................... 2 1.2.1模型方法综述 ...................................................................................................... 2 1.2.2研究应用综述 ...................................................................................................... 3 1.3 研究内容及方法 ........................................................................................................ 6 1.4 研究创新点与不足 .................................................................................................... 6 第二章 燃煤火电发展历程与研究思路 ........................................................................... 8 2.1 燃煤火电发展历程 .................................................................................................... 8 2.2 研究思路 .................................................................................................................... 9 2.2 数据来源 .................................................................................................................. 10 第三章 中国燃煤火电机组结构的演变历程 ................................................................... 11 3.1 Type-cohort-time模型 .............................................................................................. 11 3.2 TCT模型下的中国燃煤火电机组结构的演变 ...................................................... 12 第四章 燃煤火电污染物排放及因素分解 ....................................................................... 16 4.1 生命周期排放 .......................................................................................................... 17 4.1.1 燃煤火电生命周期的污染物排放 ................................................................... 18 4.1.2 可再生能源生命周期的污染物排放 ............................................................... 19 4.2 排放变化分解 .......................................................................................................... 20 4.2.1 LMDI模型 ......................................................................................................... 20 4.2.2 排放分解动因分析 ........................................................................................... 22 第五章 燃煤火电装机结构演化及环境效应预测 ........................................................... 24 5.1 BASS模型 ................................................................................................................ 24 5.2 300MW及以上火电群体系数