文本描述
2004.12.15 LED PROCESS
2004.12.15 OUTLINE
2004.12.15 LED的分类 按颜色可分为:红、橙、黄、绿、蓝等。其中红、橙、黄、绿为传统色,蓝为新开发的品种。由于三基色红、绿、蓝的存在,根据不同的比例它们可以混合成自然界中所有色彩。故全彩LED可以扩张其应用领域。
按发光强度可分为:a.普通亮度LED(发光强度<10mcd);高亮度LED(发光强度在10~100mcd间) ;超高亮度LED(发光强度100mcd)。
按制作材料可分为:GaAs、GaAsP、AlGaInP、 GaP、GaAsAlP、GaN等。
2004.12.15 LED概念与发光原理解释 什么是发光二极管?
概念:半导体发光二极管是一类具有一定量、一定成分之三五族材料,於輸入一定電壓 電流後,會發出一定波長,一定顏色,一定亮度光的结构较简单的半导体发光器件。其发射的波长覆盖了可见光、红外—远红外。(通常发光二极管是指发射可见光的二极管,发光光谱为380—780nm,为人眼所见。)
2004.12.15 LED工作原理、特性 (一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)、 AlGaInP (磷化铝镓铟)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。这些电子与价带上的空穴复合,复合时得到的能量以光能的形式释放。这就是P-N结发光的原理。如图1所示。
2004.12.15 (续)
2004.12.15 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)电子由导带向价带跃迁时以光的形式释放能量,大小为禁带宽度Eg,由光的量子性可知,hf= Eg [h为普朗克常量,f为频率,据f=c/λ,可得λ=hc/Eg,当λ的单位用um, Eg单位用电子伏特(eV)时,上式为λ=1.24um·ev/Eg ],若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在1.59 ~ 3.26eV之间。 (续)
2004.12.15 (续) 在此能量范围之内,带隙为直接带的III-V族半导体材料只有GaN等少数材料。解决这个问题的一个办法是利用III-V族的二元化合物组成新的三元或四元III-V族固溶体,通过改变固溶体的组分来改变禁带宽度与带隙类型。
由两种III-V族化合物(如GaP和 GaAs 、GaP和InP)组成三元化合物固溶体,它们也是半导体材料,并且其能带结构、禁带宽度都会随着组分而变化,由一种半导体过渡到另一种半导体。
2004.12.15 (续) 由此可见,调节X的值就能改变材料的能级结构,即改变LED的发光颜色。此即所谓的能带工程。
2004.12.15 LED制程工艺(红黄光系列) LED制程主要可分为三个阶段:前段、中段、后段(也称:上游、中游、下游。专业术语则为:材料生长,芯片制备和器件封装。)
如下表所示:
2004.12.15 (续) N-GaP-Si
2004.12.15 (续)
2004.12.15 LED Wafer 的成长
2004.12.15 切割:
晶棒长成以后就可以把它切割成一片一片的,也就是Wafer。
磊晶:
砷化镓磊晶依制程的不同,可分为LPE(液相磊晶)、MOCVD(有机金属气相磊晶)及MBE(分子束磊晶)。LPE的技术较低,主要用于一般的发光二极管,而MBE的技术层次较高,容易成长极薄的磊晶,且纯度高,平整性好,但量产能力低,磊晶成长速度慢。MOCVD除了纯度高,平整性好外,量产能力及磊晶成长速度亦较MBE为快,所以现在大都以MOCVD来生产。
其过程首先是将GaAs衬底放入昂贵的有机化学汽相沉积炉(简MOCVD,又称外延炉),再通入III、II族金属元素的烷基化合物(甲基或乙基化物)蒸气与非金属(V或VI族元素)的氢化物(或烷基物)气体,在高温下,发生热解反应,生成III-V或II-VI族化合物沉积在衬底上,生长出一层厚度仅几微米(1毫米=1000微米)的化合物半导体外延层。长有外延层的GaAs片也就是常称的外延片。外延片经芯片加工后,通电就能发出颜色很纯的单色光,如红色、黄色等。不同的材料、不同的生长条件以及不同的外延层结构都可以改变发光的颜色和亮度。其实,在几微米厚的外延层中,真正发光的也仅是其中的几百纳米(1微米=1000纳米)厚的量子阱结构。
反应式: Ga(CH3)3 +PH3= GaP+3CH4
2004.12.15 LED制程工艺
2004.12.15
2004.12.15 蒸镀AuGeNi(N面)
2004.12.15
2004.12.15
2004.12.15