首页 > 资料专栏 > 地区 > 西北地区 > 陕西 > 陕西有机矿藏资源在农业上应用的可行性研究报告DOC

陕西有机矿藏资源在农业上应用的可行性研究报告DOC

陕西农电
V 实名认证
内容提供者
热门搜索
资料大小:2126KB(压缩后)
文档格式:DOC
资料语言:中文版/英文版/日文版
解压密码:m448
更新时间:2020/7/7(发布于陕西)
阅读:2
类型:金牌资料
积分:--
推荐:升级会员

   点此下载 ==>> 点击下载文档


文本描述
泥炭、油页岩和草炭是陕西境内丰富的有机矿藏资源,主要蕴藏在铜川、咸 阳、渭南、延安等市渭北一带及榆林的干旱、生态环境脆弱的地区,储量丰富, 可开采程度高。目前,虽然人们已经认识到泥炭、油页岩和草炭等有机矿藏资源 在农业上应用的重要性,但是由于各地有机矿藏资源形成的造炭植物和环境条件 等各方面的不同,造成它们的基本性质差异较大,开发利用的难度增大。开发利 用最首要的问题是要了解他们的理化性状,然后才能正确地评价这些资源的可利 用价值,确定所应用的方面和领域,制定出科学的利用方案。但是有关我省泥炭、 油页岩和草炭的各种基本性质和农业应用价值的研究资料至今还较为贫乏,不够 全面系统,缺乏农业利用的科学依据。 本研究针对以上存在问题,对我省彬县泥炭、铜川油页岩和榆林草炭三种有 机矿藏资源的有机物质组成及含量、矿质养分含量、盐分组成及含量、持水性能 以及重金属含量等进行了系统的测定和分析研究,企图探讨我省三种有机矿藏资 源在农业中应用存在的主要问题以及改良措施,并对其农业利用价值进行客观评 价,为农业生产服务。主要研究结果如下, 1.三种有机矿藏资源中有机物质的含量和组成差异很大,其中均以胡敏素的 含量较高,褐腐酸含量次之。草炭的腐植酸含量高,尤其是黄腐酸含量较高,具 有工业化提取,生产新型肥料添加剂的开发价值;三种有机矿藏资源作为作物的 栽培基质配置方面具有应用前景,使用前进行一定的灭菌处理是非常重要的。沥 青含量高制约着有机矿藏资源安全使用,需要通过物理挥发处理或生物降解处 理,才能保证其安全使用。 泥炭、油页岩、草炭三种有机矿藏资源中各种有机物质含量均较高。有机碳 含量分别为 57.83g/kg,117.19g/kg,272.32g/kg,远高于普通土壤,是其农业利 用最显著的特点之一。腐植酸含量也较高,分别为 8.67g/kg,19.84g/kg, 156.86g/kg,非常有利于作物的生长需求。有机物质含量及玉米试验生物量均以 草炭最好,油页岩次之,泥炭稍差。 2.三种有机矿藏资源有效养分含量特征是氮高,钾较为适宜,磷素欠缺;全 量养分含量特征是氮磷较为丰富,钾素不足,钾素的供给容量低。在农业上使用 时,急需补磷,长远需要补钾。 泥炭、油页岩、草炭三种有机矿藏资源中全氮(4.26-12.74g/kg)、全磷 (1.05-2.59g/kg)、碱解氮(279-783mg/kg)含量较高,符合第二次全国土壤普查 土壤养分分级标准一级;有效磷(14.51-21.58mg/kg)和速效钾(144-380mg/kg)ii 含量中等,符合第二次全国土壤普查土壤养分分级标准二级或三级;全钾 (1.07-2.82g/kg)含量较低,为第二次全国土壤普查土壤养分分级最低标准六级。 氮磷钾养分比例失调,与关中塿土相比,全氮与全磷比例较高,全氮与全钾、碱 解氮与速效钾比例极高。三种有机矿藏资源全量养分含量和速效养分含量均以草 炭最好,油页岩次之,泥炭稍差。整体上氮含量充足,磷、钾含量缺乏。 3.三种有机矿藏资源中总盐分含量较高,盐分离子中 SO 4 2- 含量极高,成为 制约有机矿藏资源农业利用的障碍因素之一,使用前进行一定过程的洗盐是非常 必要的。同时尚需配合使用一定量的石灰。 泥炭、油页岩、草炭三种有机矿藏资源中阳离子交换量均较高,含量分别为 36.22cmol/kg , 39.37cmol/kg , 87.86cmol/kg 。水溶盐总量过高,含量分别为 11.02g/kg,8.27g/kg,19.30g/kg,是其农业利用的主要障碍因素之一。榆林草炭 中水溶盐总量过高,尤其是 SO 4 2- 含量(4.041g/kg)极高,严重影响作物根系的 正常生长。阳离子交换量按照泥炭、油页岩、草炭的顺序依次增加。水溶盐总量 按照油页岩、泥炭、草炭的顺序依次增加。 4.三种有机矿藏资源保水性能良好,高于普通土壤,田间持水量高,但萎蔫 系数因为盐分含量高的影响也相对偏高。 泥炭、油页岩、草炭三种有机矿藏资源的保水性均高于普通土壤。最大有效 水含量分别为 24.50%,25.74%,36.07%, 按照草炭最好,油页岩次之,泥炭稍 差排序,并且均与生物量呈正相关关系。 5.三种有机矿藏资源中砷含量严重超标,草炭农业利用重金属污染问题严 重,威胁食品安全。因此,建议作为腐殖酸提取的材料为宜;不宜直接作为栽培 基质使用。 泥炭、油页岩、草炭三种有机矿藏资源中砷含量分别为 61.90mg/kg, 58.15mg/kg,74.75mg/kg,皆超过无公害农产品标准中的限值(40mg/kg)。草炭 中的镉(1.49mg/kg)和汞(9.209mg/kg)也都超出无公害农产品标准中的限值 (1.0mg/kg 和 1.5mg/kg)。三种有机矿藏资源,尤其是草炭,农业利用中有效解 决重金属含量超标问题至关重要。 关键词,泥炭;油页岩;草炭;有机物质;矿质养分;水溶盐;保水性;重金属1 THE FEASIBILITY OF ORGANIC MINERAL RESOURCES OF SHAANXI APPLIED IN AGRICULTURE ABSTRACT Peat, oil shale and grass charcoal are the rich organic mineral resources in Shaanxi. They are mainly distributed in Weibei Region of the following cities: Tongchuan, Xianyang, Weinan and Yan’an and the arid and ecologically fragile parts in Yulin. They have rich reserves and highly workable extent. Although people have realized the importance of the application of the three resources in agriculture, they have difficulties in exploring these resources owing to their different properties which results from the different carbon-forming plants and the environment conditions. The primary problem in exploring and applying these resources is to know their physical and chemical properties, and then evaluate their value in application, locate the facets and fields of their application, carry out scientific projects in application. The research materials on the properties and the value of application in agriculture of these resources in Shaanxi are still insufficient and unsystematic, lack of scientific evidence of application in agriculture. This paper contributes to solving these existing problems. In the paper, the author makes a systematic testing and analysis of the peat resources in Bin County, the oil shale resources in Tongchuan and the grass charcoal resources in Yulin from the perspectives of composition and content of organic matter, mineral nutrient content, salt components and content, water holding capacity and the content of heavy metals in the three mineral resources. Through this systematic analysis, the author attempts to probe into the problems existing in the application of the three resources in agriculture, offer some measures for improvement and evaluate their value in application. The following are the five major findings: I. The content and composition of organic matter in the three resources differ greatly. The content of humin is the highest, fulvic acid is higher. Grass charcoal has a high content of humic acid and exploration value in industrial extraction and production of new fertilizer additive agent. The three resources have promising prospects as cultural substrate disposition. And it is necessary to carry out sterilization treatment beforehand. The high content of asphalt restricts the safe use of these2 resources. Their safe use can be ensured under the condition of physical volatility processing or biodegradation processing. All of the three resources contain rich organic matter. The content of organic carbon in peat, oil shale and grass charcoal is 57.83g/kg,117.19g/kg and 272.32g/kg, respectively, which far exceeds that in the soil. And this is one of the conspicuous features of their application in agriculture. The content of humic acid is also rich, which takes up 8.67g/kg,19.84g/kg and 156.86g/kg, respectively, and it is helpful for plant growth. The content of organic matter and maize biomass in the three resources go in the following order from high to low: grass charcoal--oil shale--peat. II. The feature of available nutrient content in the three resources is that available nitrogen is high, available potassium is all right, while available phosphorus is insufficient. The feature of total nutrient content is that total nitrogen and total phosphorus are high, total potassium is insufficient and its supply capacity is rather low. In agricultural application, it is urgent to replenish phosphorus and a long run to replenish potassium. The content of total nitrogen (4.26-12.74g/kg), total phosphorus (1.05-2.59g/kg) and available nitrogen (279-783mg/kg) are high in the three resources, living up to the first grade of evaluation criteria for soil nutrient in the Second National Soil Census. The content of available phosphorus (14.51-21.58mg/kg) and available potassium (144-380mg/kg) are medium in the three resources, living up to the second or third grade of evaluation criteria for soil nutrient in the Second National Soil Census. The content of total potassium (1.07-2.82g/kg) is relatively low, living up to the sixth grade of evaluation criteria for soil nutrient in the Second National Soil Census. The proportion of nitrogen, phosphorus and potassium is imbalanced. Compared with Lou soil in Guanzhong, the proportion of total nitrogen and total phosphorus are relatively high, while the proportion of total nitrogen and total potassium, available nitrogen and available potassium are very high. The content of total nutrient and available nutrient in the three resources go in the following order from high to low: grass charcoal--oil shale--peat. In general, the content of nitrogen is sufficient, while phosphorus and potassium are insufficient in the three resources. III. Total water-soluble salt in the three resources is rather high, especially SO 4 2- in salty ions is very high. This has become one of the interruptive factors of their being used in agriculture. It is necessary to remove salt beforehand and at the same time a proper amount of lime is needed. CEC is high in peat, oil shale and grass charcoal, which takes up 36.22cmol/kg, 39.37cmol/kg and 87.86cmol/kg, respectively. Total water-soluble salt is too high,3 which takes up 11.02g/kg, 8.27g/kg and 19.30g/kg, respectively, and this is one of the interruptive factors of their being applied in agriculture. Total water- soluble salt is too high in grass charcoal, especially SO 4 2- (4.041g/kg), thus seriously influencing the normal growth of plant roots. CEC in the three resources goes in the following order from low to high: peat--oil shale--grass charcoal. Total water-soluble salt goes in the following order from low to high: oil shale--peat--grass charcoal. IV. Water holding capacity of the three resources is all right, higher than that of the soil. Water holding capacity is high, whereas wilting coefficient is rather high owing to the high content of salt. Water holding capacity of peat, oil shale and grass charcoal are higher than the soil. The content of maximum available water is 25.74%, 24.50% and 36.07%, respectively, which goes in the following order from high to low: grass charcoal--oil shale--peat, and they all demonstrate positive correlation with biomass. V. The content of As in the three resources seriously exceeds the limit standard. The pollution problem resulting from heavy metals in grass charcoal is very severe, seriously threatening food security. Therefore, it is advised that grass charcoal be used as a material to extract hunics acid, not cultural substrate. The content of As in peat, oil shale and grass charcoal is 61.90mg/kg, 58.15mg/kg and 74.75mg/kg, respectively, exceeding the limit standard (40mg/kg) for non-environmental damage agricultural products. Cd (1.49mg/kg) and Hg (9.209mg/kg) also exceed the limit standard (1.0mg/kg and 1.5mg/kg) for non-environmental damage agricultural products. In order to apply the three resources, especially grass charcoal, it is very important to solve the problem of too much heavy metal. KEY WORDS: peat; oil shale; grass charcoal; organic matter; mineral nutrient; water-soluble salt; water holding capacity; heavy metal4 目 录 第一章 文献综述1 1.1 我国泥炭资源的储量、分布及开发利用现状 1 1.1.1 我国泥炭资源的储量 2 1.1.2 我国泥炭资源的分布 2 1.1.3 我国泥炭资源的利用现状 3 1.2 我国油页岩资源的储量、分布及开发利用现状 4 1.2.1 我国油页岩资源的储量 4 1.2.2 我国油页岩资源的分布 4 1.2.3 我国油页岩资源的利用现状 5 1.3 国外泥炭资源在农业上的开发利用 5 1.4 国外油页岩资源在农业上的开发利用 7 1.5 陕西境内有机矿藏资源概况7 1.5.1 咸阳等地的泥炭资源 7 1.5.2 铜川等地的油页岩资源 7 1.5.3 榆林等地的草炭资源 7 第二章 试验材料与测试项目9 2.1 试验材料 9 2.2 测试项目与方法 9 2.3 供试材料基本性状及农业利用前景分析与评价 10 2.3.1 理化性状 10 2.3.2 肥力性状 12 第三章 有机矿藏资源中有机物质组成与生物效应分析13 3.1 研究方法 14 3.1.1 供试材料 14 3.1.2 测定方法 14 3.1.3 灭菌处理对比试验材料与方法 15 3.2 结果与讨论 15 3.2.1 有机矿藏资源腐殖质组成分析 15 3.2.2 有机矿藏资源有机成分组成与生物效应分析 18 3.2.3 有机矿藏资源灭菌处理对比试验结果分析 195 第四章 有机矿藏资源中矿质养分含量与分析22 4.1 研究方法 23 4.1.1 供试材料 23 4.1.2 测定方法 23 4.2 结果与讨论 24 4.2.1 有机矿藏资源矿质主要养分含量 24 4.2.2 有机矿藏资源矿质养分含量与生物效应分析 25 第五章 有机矿藏资源中盐分含量与分析27 5.1 研究方法 27 5.1.1 供试材料 27 5.1.2 测定方法 27 5.1.3 灭菌处理对比试验材料与方法 30 5.1.4 不同用量石灰处理对比试验材料与方法 30 5.2 结果与讨论 30 5.2.1 有机矿藏资源阳离子交换量及盐基饱和度分析 30 5.2.2 有机矿藏资源水溶盐总量及盐分离子组成分析 31 5.2.3 有机矿藏资源洗盐处理对比试验结果分析 32 5.2.4 有机矿藏资源不同石灰用量处理对比试验结果分析 34 第六章 有机矿藏资源持水性能分析 37 6.1 研究方法 37 6.1.1 供试材料 37 6.1.2 测定方法 37 6.2 结果与讨论 38 6.2.1 有机矿藏资源水分特性参数分析 38 6.2.2 有机质含量与最大有效水含量的相关性分析 38 6.2.3 最大有效水含量与地上部生物量及总生物量的相关性分析 39 第七章 有机矿藏资源中重金属含量分析40 7.1 研究方法 40 7.1.1 供试材料 40 7.1.2 测定方法 40 7.2 结果与讨论 41 7.2.1 有机矿藏资源重金属含量分析 41 第八章 结论446 8.1 有机矿藏资源中有机物质含量分析 44 8.2 有机矿藏资源中矿质养分含量分析 44 8.3 有机矿藏资源中矿质养分含量分析 44 8.4 有机矿藏资源持水性能分析 45 8.5 有机矿藏资源中重金属含量分析 45